
SAPHIRE FACETS
Idaho National Environmental and

Engineering Laboratory

Editor: Curtis L. Smith
P.O. Box 1625

Idaho Falls, ID 83415-3850
(208) 526-9804

FAX (208) 526-2930
e-mail: CLS2@inel.gov

SAPHIRE FACETS is published
twice a year. Submissions are
welcome and can be sent to the

editor.

Copyright © 1999 by
Bechtel, B&W Idaho, Inc.

N E W S

6$3+,5(�)$&(76SPONSORED BY MEMBERS OF THE SAPHIRE USERS GROUP

L E T T E R
Vol. 4 No. 2
Fall 1999

Risk Analysis News and Information for SAPHIRE and IRRAS Users

7KH�7XWRU�LQ�7XWRULDO��WX�WR!UL�DO�

INSIDE

A Case Study: Two
Components In
Parallel With
Epistemic
Uncertainty 2

Time-Series
Calculations Via
SAPHIRE 7

SAPHIRE Tip -
Storing Cut Sets 11

The SAPHIRE
TV&V 12

SAPHIRE Tutorials

tu•tor 1. A private instructor. 2. A
teacher or teaching assistant.

Vital to the utilization of any complex
technology is proper training on that
technology. Consequently, one of the
important focuses of the SAPHIRE
Users Group has been the
dissemination of information on both the
use of SAPHIRE and the understanding
of the probabilistic risk assessment that
is behind the software. That tradition is
carried on in this issue of the Facets,
specifically

� The article by Emanuele and
myself illustrates one of the
more complex, yet fundamental,
concepts in reliability
assessment. Namely, the topics
of “average,” “structure
function,” and why SAPHIRE is
not always correct are
addressed.

� The article by Jim covers one of
the newest calculational features
in SAPHIRE, the “time-series”
basic event. He illustrates use
of this “plug-in” for a probability
calculation that, up to now, was
difficult to perform using
traditional cut-set based risk
analysis programs.

� The latest information on the
SAPHIRE testing, verification,
and validation exercise is
provided.

� A short article is presented to

address how to use the “end
state” save option for storing
minimal cut sets. This technique
will allow you to store multiple
sets of minimal cut sets safely in
the SAPHIRE database.

In addition to the tutorial-type of
information you will find in the
newsletter, the SAPHIRE web site
(saphire.inel.gov) provides a growing list
of beginner to advanced-level tutorials.
These on-the-web tutorials provide a
step-by-step approach to performing
specific actions within
SAPHIRE. So, if you want
to see how to start a new
project, build a fault tree,
or save cut sets to an
end state, go to the
Users area of the web
site.

YEAR 1900+100
And lastly, since this is the final
newsletter that will have a “19xx” year
on the cover and the subject matter
deals with software (risk analysis
software at that), I thought I would say a
few brief words on Y2K.

First, SAPHIRE is Y2K compliant for two
reasons; it stores dates as four-digit
years and it does not use any dates in its
calculations. Second, it appears that the
likelihood of a Y2K catastrophe is small,
so enjoy December 31st and January 1st.
Third, have a productive and happy new
year!

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

A Case Study: Two Com-
ponents In Parallel With
Epistemic Uncertainty

Emanuele Borgonovo and Curtis
Smith

Introduction
In this article we will illustrate the
general steps in the assessment of
the reliability and availability of a
system. The first part of the article
will focus on the theoretical aspects,
illustrating the fundamental
concepts of a “structure function,”
the rare event approximation,
aleatory uncertainty, and epistemic
uncertainty (for now, think of these
as two types of uncertainty, model
and parameter). The second part
will apply those concepts to the
case of two components in parallel,
illustrating how SAPHIRE can
approximate an availability
evaluation.

General Definitions
A system is designed and built to
perform a specific function. When it
is not able to perform its intended
function, we generally speak of
failure of the system. Let us
indicate with “X” the variable which
represents the state of the system
and assign to X the value of 1,
when the system is down, and 0
when the system is working. With
this assumption, the behavior of the
system is governed by Boolean
logic.

It is well known that, in real life, it is
not always easy to draw a sharp
line between total failure, and partial
failure modes. Therefore, at least in
theory, we should assign to X a third
value (½, for example) to indicate
that it is not perfectly working, but it
is not totally failed. This is not
normally done in traditional
probabilistic risk or reliability
analysis, and so the state variable
(also called indicator variable) X
can assume only two values and is
defined as a Boolean variable.

Again, these two values for our
example are either 0 (working) or 1
(failed).

The generic system X will normally
consist of a set of components. At
a certain time, any one of these
generic components will be failed or
working. Depending on the
configuration of the components,
the system in turn will be up or
down. This dependence of the state
of the system X to the state of the
various components is expressed
by the following notation:

XT = X(X1, X2,..., XN), (1)

where N is the total number of
components. Equation (1) is what is
called "structure function" of the
system. It embodies the logical
structure of the system.

Let us for simplicity refer to the
case of a system made up of two
component in parallel. The system
will be working when either one of
the two components is working.
Consequently, both components
must be failed to fail the system.

Since each component can be up or
down, the structure function is in
this case given by:

XT = X1 X2 (2)

The structure function of the system
is related to its cut sets and the
minimal cut sets. Let us consider a
system constituted by N
components. The system will
certainly be down when all of the
components will be failed. But it

may fail before all the com-
ponents are failed (depending on
the system design). Now, a
sufficient condition for the system
to be failed is that a certain set of
components are failed. This
condition brings us to the
definition of a cut set as a set of
indicator variables (i.e., indicating
system is inoperable)

Mi = { X1, X5,…,Xh }

for which, if X1, X5,…,Xh are all
equal to 1 (failed) then this
implies that XT is equal to 1. That
is, if the set of components 1,
5,…, and h is failed, the system is
also failed. Thus, by definition, Mi

= 1 if and only if each of the
indicator variables of the set is
equal to 1. As you can guess, we
are leading up to the concept of
minimal cut sets.

Suppose now, that if component
5 is working, the system is still
failed. This would mean that the
set of component we have
considered is a cut set, but the cut
set is not minimal. A minimal cut
set is a cut set which does not
admit another cut set as a subset.
That is, if we are considering a
minimal cut set, all the com-
ponents in it must be failed in
order to fail the system.

In general there will be more than
one way to collect the
components of the system and
produce its minimal cut sets. If
this is done (and let us suppose
we have found k minimal cut
sets), it can be proven that the
structure function expressing the
failure of the system can be
written as:

 (4); 07 L

N

= − −∏� �� �

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

If we look at Equation (4) in some
detail, we can see that it is
analogous to the structure function
of the series of k components: the
system is down, when a component
is down. In our case, when a
minimal cut set is verified (Mi = 1 by
definition), the system is down.

From Structure Function To
Probabilities
Let us now refer to a generic
system. Suppose we have studied
its failure modes and we have
identified its minimal cut sets. We
are now ready to answer the
question “what is the failure
probability of the system?” In
asking such question, we are
making a modeling assumption.
That assumption is we are
considering the failure of a system
as a “random” event. From this
way of thinking comes the link
between the structure function and
the subsequent failure probability
for the system.

To illustrate such a link, we will refer
to the case of two components in
series.

The system will be failed when:

6 A fails or B fails
6 A and B fail together

In terms of a Venn diagram and
random events, we represent the
system as follows: the system is
failed when the random events A, B,
or AB have occurred.
In view of Boolean logic, the events

are related by an OR gate . From
the logic, the minimal cut sets of the
system are (in SAPHIRE notation):

A +
B.

The structure function of the system
is:

 (5)
; 0

; ;

7 L

N

$ %

= − −

= − − −

∏� �

� � �

� �

� �� �

Now we are ready to quantify the
system probability. But, we must
first expand the structure function
before numerically evaluating the
component probabilities. That is,
we expand the structure function to:

 (6)

; 0

; ;

; ; ; ;

7 L

N

$ %

$ % $ %

= − −

= − − −
= + −

∏� �

� � �

� �

� �� �

Now we can (and must) write the
corresponding probability of system
failure (i.e., event T) as:

P(T) = P(A) + P(B) - P(A B) (7)

To calculate P(T) we need the
probabilities: P(A), P(B), and P(AB).
Probability theory tells us that:

P(AB)=P(B|A) P(B) (8)

where P(B|A) is the conditional
probability of B happening given
that A has happened. If we do not
consider “common cause” failures,
but assume only independent-type
failures, we are allowed to write:

P(AB)=P(A) P(B) (9)

Then, we can write:

P(T) = P(A) + P(B) - P(A) P(B)
 (10)

The Rare-Event Approximation
In the case of a generic system with

N components, the structure
function will be more complex.
For example in case of a two-out-
of-three logic we get:

;7 � 0L�
N

^� ;$;%�� ;%;&�� ;&;$`

;$;% ;%;& ;&;$;$;%;&

= − −∏

= − − − −

= + + −

� �

� � � �

�

 (11)

After reducing this equation via
standard Boolean algebra, we
can proceed to the probabilities to
get:

3�7� 3�$%� 3�%&�

3�$&� 3�$%&�

= + +
− �

 (12)

In many situations of modern
reliability and risk assessment,
we are dealing with events that
have a very low probability of
occurrence. In other words, they
are "rare events." In this case of a
“rare event,” we know that the
term P(ABC) is much smaller
than the term given by P(AB) +
P(BC) + P(AC). Therefore, it is a
good approximation not to
consider this probability [P(ABC)]
in the calculation.

In general then, the rare-event
approximation for a set of
minimal cut sets tells us that we
may simply sum each cut set to
obtain the overall (approximate)
probability.

Unreliability And Unavailability
– Two Components In Parallel
Let us refer to a system of two
components A and B in parallel
(for example, see the previous
page). The corresponding cut set
is:

T = A · B (13)

The structure function can be
written, in this case, as:

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

XT = XA · XB (14)

Let us now consider the following
question: “What is the reliability of
the system?” To answer this
question, we must go to event
probabilities and write:

P(A B) = P(B | A) @ P(B) (15)

Let us neglect, for the moment,
dependent failures. Thus, we can
use:

P(A B) = P(B) P(A) (16)

Now, assume that in order to obtain
P(B) or P(A), we need to consider
an aleatory model. Aleatory
models represent a random
process; an example of this process
would be the time until a light bulb
burns out. For this example, we will
assume that P(B) and P(A) can be
represented by the aleatory model:

P = 1 - e- t (17)

where is the event failure rate and
t is the duration of operation (i.e.,
the mission time). If the product “
t” is small (less than 0.1), then
Equation 17 is approximately:

P . t (18)

We can rewrite Equation 16 as:

P(A B) = A B t
 2

Suppose now that we are interested
in the average unavailability of this
simple system. To find the
average, we can return to the
standard definition of an average
from calculus class. This definition
is given by:

(19);DYH
7

; W GW ;
7

� � �= =∫
�

�

For our system, the time of interest
(i.e., time over which we measure
the unavailability) is the mission
time. If T is the mission time of the

system we obtain:

 A B t
2

3 $% GW� � = ∫
�

�7

7

= D A B T
 2 (20)

Note that Equation 20 provides a
different result than what we see
out of SAPHIRE. The SAPHIRE
software deals with minimal cut
sets and does not treat system
results in an exact, calculus-based
framework. To illustrate this point,
we need to look at how the
individual components (i.e., A and
B) are brought together in
SAPHIRE.

Looking at an individual component
(say for A), its average unavai-
lability is:

 A t3 $ GW� � = ∫
�

�7

7

= ½ A T (21)

a familiar result. Now, since
SAPHIRE deals with cut sets, it
would produce the system average
result as:

 (½ A T)(½ B T)3 $ 3 %� � � � =

 = ¼ A B T
 2 (22)

Comparing Equation 22 to Equation
20, we notice that SAPHIRE slightly
underestimates the correct average
unavailability (since it uses a factor
of ¼ rather than the correct D).

While we have shown that
SAPHIRE underestimates the
system unavailability for our simple
system, we also know that the
SAPHIRE calculation is a point
estimate. Notice that we have not
introduced the notion of uncertainty

sampling (in
order to obtain a average value)
yet in the discussion. It is
possible that
propagating
uncertainty
through our
aleatory
model [e.g.,
Equation (22)] would bring us
closer to the exact average
system unavailability results. But,
to investigate this avenue, we
need to introduce the notion of
epistemic (a.k.a. parameter)
uncertainty.

Epistemic Uncertainty
When dealing with random
events, we do not know when the
event will happen (aleatory
uncertainty), and therefore we use
a distribution for the failure time of
the component (the exponential,
for instance, if aging is not
considered).

In real problems, we are never
given the exact failure rate of
components, but we know their
failure rates only up to a certain
degree, based on the data
available. This state of know-
ledge uncertainty is referred to as
epistemic uncertainty.

Coming back to our example, this
uncertainty will force us to utilize
two distributions that display our
state of knowledge about the real
values of the component failure
rates (A , B). These distribution
are called epistemic distributions.

The effect of introducing the epi-
stemic uncertainty is to render A
and B as two random variables.
Therefore, P(A B) will become a
function of random variables.
The epistemic uncertainty on the
individual parameters will
propagate through the overall
expression (20) in the case of an
exact calculation or expression
(22) in the case of the SAPHIRE
approximation.

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

To summarize these analysis steps
for determination of overall system
average unavailability, one must:

1. Determine the structure
function for the system.
Alternatively, one could use
SAPHIRE to generate
minimal cut sets.

2. Expand the structure
function to its complete
form. Alternatively, one
could approximate the
structure function expansion
by utilizing the SAPHIRE
minimal cut set upper-
bound quantification.

3. Pass the applicable
probabilities into the
structure function equation
to obtain a point estimate to
the unavailability. It may be
possible to utilize the rare-
event approximation to
speed-up this step.

4. Obtain the average
unavailability by integrating
the structure function over
the mission time.

At this point, we have not included
the epistemic uncertainty in the
average unavailability calculation
for either the exact (i.e., calculus)
equation or the SAPHIRE
approximation. The fact that the
parameters of the calculation have
uncertainty implies that the
calculation result will have
uncertainty associated with it. Thus,
we will have a distribution for the
average unavailability calculation.
While at first glance this might be
confusing since we could obtain the
average of our “average
unavailability.” We do not
frequently speak of “averages of
averages,” but they do certainly
exist.

To think of this “average” situation
in another way, imagine that you
took 12 shoelaces and measured

the length of each. From these
measurements, you could
determine an average length. But,
the value of the average length is
uncertain since we have a finite
sample size (e.g., 12). In other
words, measuring another shoelace
(the 13th) and recalculating the
average length would result in a
new value. Consequently, it may
be useful to estimate a lower bound
and upper bound on the average
length. Alternatively, an average
value for the average length could
be estimated.

In the next issue of the SAPHIRE
Facets we will demonstrate the
calculation for evaluating the exact
unavailability when considering
uncertainty on the inputs (i.e.,
epistemic uncertainty). For now,
we will demonstrate an epistemic
uncertainty calculation using
SAPHIRE.

Epistemic Uncertainty In
SAPHIRE

We return to our parallel system.
As we have discussed, SAPHIRE
would produce the system average
result as:

 (½ A T)(½ B T)3 $ 3 %� � � � =

 = ¼ A B T
2 (23)

We can reproduce this equation
in SAPHIRE by ANDing event A
with event B. Then, for each
event, we will assign a
“calculation type” of 7 to the
event. This calculation type
represents an average
unavailability over a mission time
of T. The mean failure rate and

uncertainty for each event is
shown in Table 1. This
information is also entered into
the SAPHIRE database.

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

Figure 1. Convergence results of SAPHIRE uncertainty sampling.

Table 1. The epistemic
distributions.

Failure rate mean EF
 A 10-5 10
 B 10-6 10
Note: The rates are in per hour units.
The “EF” represents the error factor for a
lognormal distribution.

We set the mission time T to be a
value of 1000 hours (note that for
the calculation type 7, the mission
time is entered into the “tau” field of
the basic event data screen). At
this point, we now have enough
information to perform the
calculation.
From SAPHIRE, the cut sets of the
system are:

A B.

The point estimate unavailability for
these cut sets from SAPHIRE is
compared to the exact calculation
and is shown below.

Calculation Value
 SAPHIRE 2.5×10-6

 Exact 3.3×10-6

Note that the correct calculation is
slightly higher than the SAPHIRE
results. Now, we can propagate the
uncertainty on our failure rates
through the calculation by telling
SAPHIRE to perform an uncertainty
analysis on the cut sets shown
above. To perform the uncertainty
calculation, select the fault tree
from the fault tree screen, click the
right mouse button, and select the
Uncertainty option. Now, we must
choose the number of samples; the
seed; and either Monte Carlo or
Latin Hypercube sampling.

The choices you make for the seed
value and sampling type are
generally not important. What is
important is that your uncertainty
analysis results are converging to
an answer. Thus, it is prudent to
start the uncertainty analysis with a
low number of samples (e.g.,
1,000) and then increase the
number of samples while checking
for convergence in your answer.
This process is illustrated in Figure
1 where we plot the average (i.e.,
mean) value versus the number of
samples.

As can be seen in Figure 1, the
results of the epistemic
uncertainty analysis in
SAPHIRE for the simple
parallel system appears to
converge around approx-
imately 4,000 samples. Not
shown on this figure are
percentiles like the 5th or 95th.
In the next issue of the Facets,
when the uncertainty on the
exact calculation is explored,
the percentiles from the
SAPHIRE calculation will be
useful to compare the
SAPHIRE results with the
exact results. For now, we will
close by reiterating a few
points from the discussion.

6 Underlying a logic
model is an associated
structure function.

6 To determine an exact
failure probability, one
could utilize the structure
function.

6 SAPHIRE analysis results
for some cases (e.g., the
average unavailability for
redundant components) is
an approximation to an
exact calculation.

6 Both an exact calculation
and an approximation
may have uncertainty
associated with the
analysis if its respective
inputs are uncertain.

6 Aleatory uncertainty
represents randomness in
the outcome of events
while epistemic uncer-
tainty represents potential
variation in the model
input parameters.

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

PNRAC tlong | tshort ' P (L > tlong|L > tshort) _ (G > tlong| G > tshort)

�:MJ
YWZJ
QTLNH
TK
YMNX
\TWQI
NX
NS
YMJ
HFQHZQZX
TK
UWTGFGNQNYNJX�

James Clerk Maxwell (1831-1879)

7LPH�6HULHV�&DOFXODWLRQV

9LD�6$3+,5(

James Wilson

As nuclear reactor probabilistic risk
assessment (PRA) matures or PRA
is applied to more diverse fields,

problems are encountered that
cannot be easily solved with
traditional codes. Two illustrations
of this problem are:

6 Calculating the probability
of recovering power (at a
power plant). During the
time power is lost at a
power plant, several com-
peting events are occurring
such as depletion of the
plant batteries, restoration
of the emergency diesel
generators, and attempts to
recover off-site power. All
of these events have a time
element associated with
them that must be
accounted for in the
probability determination.

6 Some systems are best
modeled as a sequential
wear-out failure with units of
time. For example, if a
storage container is buried
in the ground, we do not
need to worry about water
corrosion until water is
present around the
container. Consequently,
the probability that the
container fails over a period
of time is influenced by both
the time to water intrusion
and the probability of failure
given water intrusion.
These two elements may
both be a function of time.

We will look at these two problems
in greater detail.

Loss Of Power

At a nuclear power plant, the loss
of off-site power (LOOP)
nonrecovery probability (that is,
the probability that off-site power
is not recovered in a time t) may
be modeled as

where

NRAC = non-recovery of
AC power

tlong = plant battery
depletion time
(akin to a mission
time)

tshort = time interval to un-
cover the reactor
core if no safety
system were to
function.

L = duration of LOOP
G = duration of diesel

generator
unavailability.

One traditional approach to this
problem is an offline calculation
using "convoluted" or nested
integrals where the integration is
over the time intervals that are
important to the loss of power.
With the recent upgrade to
SAPHIRE, this processing may
be done online using standard
input parameters, by modeling
the event PNRAC as a “compound”
event. We will demonstrate use
of compound events and the new
time-series calculation with an
example in the next section.

Sequential Wear-out Failures

Several of the scenarios in a
nuclear waste repository event
tree (e.g., for Yucca Mountain)
involve all the components failing
within a given time-span. These
time spans were very long
compared to traditional PRA
calculations. For example, one of
the principle initiators was a new

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

25 50 100 460 480 500 600 750 900 1000 1500

Mission Tim e (Years)

F
ai

lu
re

 P
ro

b
ab

ili
ty

TimeBased Inverted Mean Geometric Mean

Figure 2. Illustration of calculational error between time-based and probability-based
event analysis.

ice age occurring over the next
100,000 years, shifting the jet
stream southward over the
repository, thereby increasing
precipitation in the desert area.
This increased precipitation could
corrode through a waste package,
potentially allowing fissile material
to assemble into a critical
configuration.

This string of events presented
problems for traditional SAPHIRE
calculations because:

1. The events were expressed
in time to failure rather than
probability of failure.

2. The events may have a
period with no failures, then
a period when all com-
ponents failed. For
example, it is possible that
all wetted packages failed
between 1,000 and 3,000

years. Prior to the 1,000
years, no packages failed
(with probability of one).

3. Because of the mission
times involved (e.g., 10,000
to 1 million years),
prediction of component
and geologic behavior relied
heavily upon Delphi
predictions (e.g., expert
elicitation) involving
probabilities and time. For
example, output of the
Delphi process may yield a
probability of 0.5 that the
component failed in 5,000 to
10,000 years and a 0.5
probability that the com-
ponent did not fail at all.

4. These events were sequen-
tial in time. That is, the
“clock” did not start ticking
for Event B until Event A
happened. For our case,

we can not have a critical
configuration until precip-
itation increases in the
desert area. And, we
could not have
precipitation until an ice
age occurred (for this
scenario).

This string of time dependent
events initially required modeling
all time-related events as a
SAPHIRE logic model with all
probability events represented
separately on the fault tree. We
then modeled this same scenario
using the time-series compound
event in SAPHIRE. Figure 2
shows the error introduced when
we attempt to change the

3DJH�����)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

Figure 3. Fault tree with time-based events mixed with probability events. Note that the time-based events
are evaluated using the SAPHIRE “time-series” plug-in calculation.

time-based data into
probabilities
(so that we can put
them into the fault
tree). The curve
labeled “Time Based”
represents the new
SAPHIRE compound
event for time-series
calculations. The two
curves labeled
“Inverted Mean” and
“Geometric Mean”
represent the
traditional fault tree
modeling. Note that
this discrepancy is
not unique to
SAPHIRE; any fault
tree program that
utilized tradition
techniques would
have the same
calculation limitation.

Comparison Of
Probability Versus
Time-Based
Methods

First, we will present
hypothetical scenario
events for our
criticality- accident model. Note that
the events and data in this article do
not represent any real-world
repository calculations.

New Ice Age Arrives
An ice age is expected sometime
between 1 to 900 years into the
future, with a mean of 450 years
(again, for illustration purposes
only). Since we need a probability
in the SAPHIRE fault tree
technique, we could just invert the
mean time to come up with an
frequency, or 1/450 yr = 2.2E-3/yr.
This is the “Inverted Mean”
approach. A second approach
would be to take a geometric
average of the inverse upper bound
(e.g., 900 years) and the inverse
lower bound (e.g., 1 year) or
sqrt[(1/1yr)(1/900 yr)] = 3.3E-2/yr

Precipitation Infiltrates Repository
It takes 100 to 300 years for surface
water to infiltrate to the repository,
with mean of 200.

Waste Package Corrodes Through
If a particular waste package is
wetted, it will corrode through in
200 to 400 years, with mean of 300.

Fissile Material Separated from
Nuclear Poison and Assembled into
Critical Configuration
The time for a corroded waste
package to have poison removed,
and resulting fissile material
critically configured is 50 to 150
years, with mean of 100.

Other Factors
100 casks have sufficient fissile
material to go critical if
reconfigured. Thus, we need to

multiply resulting calculation by a
factor of 100.

Figure 2 shows the analysis for a
mission time of up to 1500 years.
Note that the error resulting from
a probability-space calculation
(i.e., multiplying independent
probability events together via a
fault tree) is as high as four
orders of magnitude from the
more appropriate time-based
calculation.

To perform the time-based
calculation, we used the latest
version of SAPHIRE with the new
“time-series” plug-in. We explain
these steps in the next section.

Overview of New SAPHIRE
Time-Series Plug-In

3DJH������)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

Figure 4. The SAPHIRE screen representing the compound-event information.

SAPHIRE can
now perform
Monte Carlo
calculations for
the time domain
via a new time-
series basic event
calculation. For
this calculation,
the inter-related
time-based events
(for a particular
scenario) are
represented in the
fault tree under a
single compound
event. This
compound event
is just a normal
basic event as far
as the fault tree is
concerned. In
Figure 3, we
represent this
event as
COMPOUND
(where any name,
up to 24
characters, will
do). Note that you
do not represent
any of the individual time-based
events in the fault tree; instead, they
will be “hidden” within the
probability calculation for the basic
event named COMPOUND.

Next, even though the time-based
events are not in the fault tree, we
need to add them to the database
(so the time-series calculation can
use them). Thus, enter the
applicable time-based events using
the usual Modify, Basic Events
option. These events would be
items like ICE_AGE were it would
be a uniform distribution from 1
year to 900 years. Note that these
events must represent time
(specifically, time to a particular
event such as an initiator, failure, or
recovery from a failure). Continue
adding the remaining time-based
events (PRECIPITATION,
CORRODES, etc.)

After all of the time-based events
are added to the database, go to the
time-series calculation event (still in
the Modify screen), which, in our
case, is the event named
COMPOUND. We need to modify
this event to make it use the new
time-series calculation.

When we edit an event (under
Modify, Basic Event), we will see
a tab for "Attributes." Click this tab
and select the option "Compound
Event" in the "Special Use Flags"
box. Then, click the "Compound
Event" tab. At this point, we have
told SAPHIRE that the event is a
“compound-type” event, but we
have not told it what plug-in
calculation to use (a plug-in is
simply a user-defined external
calculation). So, we need to identify
what calculation to use, which, in
our case, is the “time series”
calculation.

To identify the plug-in calculation
to use, click the the "Library"
option (still on the "Compound
Event" tab). Select the:

PLUGTIMESERIES.DLL

option. Now that we have told
SAPHIRE to use the time-series
calculation, we need to tell it
which parameters to use for the
calculation. First, we can rep-
resent the mission time as a basic
event or by typing a value directly
in the “mission-time” location (i.e.,
the top of the event list). Now, we
need to identify each of the time-
based events in our scenario. To
do this, highlight the basic event
(from the left column) that
represents the first time event
and then highlight the “time event
1 field (from the right column).
Click the Add –> button. Repeat

3DJH������)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

this process for each of the time-
based events.

The output for the compound event
will be a probability, representing
the fraction of time that the
cumulative time for the sequence of
events (identified in the right column
of Figure 4) is less than mission
time. Pressing the “Test” button will
calculate this probability so that you
can see if the calculation is working
correctly or not.

Conclusions
Since the fault tree does not treat
the Compound event as multiple
events, only one importance
measure is generated for the whole
event. To see the effect of
changing subevents (i.e., those
time-based events we identified
above) within the compound event,
one would have to use SAPHIRE
change sets to perform a sensitivity
analysis.

Time-based scenarios occur in both
inside and outside the nuclear
reactor industry. Analysts need to
be aware that such problems
require special analysis treatment.
With this capability now in
SAPHIRE, the analyst can be
assured of proper treatment more
realistic calculational results.

6$3+,5(�7LS���6WRULQJ�&XW

6HWV

If you have used SAPHIRE awhile
and have read the on-line help, you
know that SAPHIRE has two places
to store the minimal cut sets that
you generate. First, the analysis cut
sets are automatically stored in the
“current case” part of the SAPHIRE
relational database. Second, you
can move the current-case cut sets
into a “permanent” storage location
in the database. This second
storage place is known as the “base
case.”

Now, lets assume that you have 15
sensitivity analyses to perform on a
fault tree and you would like to store
the cut sets results for each case in
SAPHIRE. How can you do this?

Well, new to version 6.x is the
ability to save cut sets directly to an
end-state.

Best of all, this end-state is user-
defined (at the time you save the
cut sets) and can be named
anything up to 24 characters long
(do not forget to provide an
appropriate description). To access
this “save” option, generate your cut
sets as normal (via the Solve
option). Then, for the fault tree,
select the Display, cut sets option.
At this point, you should notice a
“save” button. Click this button to
bring up a dialog box prompting you
for an end-state name and
description. Type in an name (say
“my_end_state”) and description
and then click the “save” button.
You have just saved the cut sets for
this fault tree to an end state.

Note that the cut sets you just
generated (i.e., via the solve
option) used the current-case data
for the quantification portion of the
analysis. When you go to the end
state (e.g., my_end_state) to view
the cut sets, the cut sets will reflect
the data that is in the current case
at the time you view the cut sets
(since these cut sets for the end
state are stored in the end-state,
current-case part of the relational
database). Consequently, if you
move to the next sensitivity analysis
(which entails changing the current-
case data) and then go look at the
previous cut sets (stored in
my_end_state), the order of the cut
sets may change since the data has
changed. Thus, it is good practice

to note which change set(s) was
used to generate its associated
saved end state. Ways to note
the change set information
include:

• Type the change set
name into the end-state
description.

• Type the change set
name into the end-state
text. The “text” option is
available under the
Modify, End State, Text
option.

• Record the change set
name to end state
relationship out side of
SAPHIRE (e.g., in a
WordPerfect file).

There is no limit to the number of
end-states you may have in a
database (other than available
hard-drive space).

The cut sets that you store in an
end-state will remain as part of
the relational database. If you
would like to remove these cut
sets, you will have to utilize the
Modify, End State option. Here,
you can delete an end-state from
the database. If you attempt this,
you will be prompted to make
sure that you really want to delete
the data. Once deleted, you can
not recover the data, so make
sure that you really want to
remove the data from the
database.

3DJH������)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

7KH�6$3+,5(�79	9

Older versions of SAPHIRE have
been tested in formal verification
and validation (V&V) processes.
For example, both versions 4.0 and
5.0 were subjected to a V&V that
consisted of the following steps:

6 Preparation of a V&V plan

6 Evaluation of the code
development control
procedures

6 Test case development

6 V&V testing

6 Documentation of the test
results and
recommendations.

These steps are consistent with the
IEEE’s “Standard for Software
Verification and Validation Plans”
(IEEE 1012-1986).

For later versions of SAPHIRE,
specifically versions 6.0 and 7.0, a
new process was used for testing
the software. We call this process
testing, verification, and validation
(TV&V), with an emphasis on the
testing portion.

The benefits of the TV&V process
over that of the older formal V&V
are many. In general, the majority

of the effort
expended in the

testing is spent
on developing
rigorous tests

that focus on
potential bugs
in the

calculational
areas of

SAPHIRE, namely the generation
and manipulation of minimal cut
sets. More specific benefits of the
TV&V over the V&V process
include:

6 The TV&V process is less

prone to human error since
the test script performs
each test, is repeatable, and
has a single (known) set of
results from which to
compare the analysis
results against.

6 The TV&V process is con-
sistent and thorough since
the test scripts can be
constructed to test single or
multiple portions of the
software once or numerous
times. Tests that would be
burdensome to analysts
(e.g., many repetitive tests,
very long test runs) can
easily be performed by the
testing software.

6 The TV&V process is
applied to every release of
SAPHIRE rather than
specific versions or
releases at some selected
point in time. Since the old
V&V was analyst time-
intensive, this option of
testing each version of the
software simply was not
available.

6 The TV&V process actually
encourages difficult tests to
be performed. The old V&V
process was limited in the
number of tests that could
be performed since the
tests were analyst time-
intensive. The new process
utilizes automated testing
software which, in practice,
is fairly insensitive to the
complexity of a particular
test.

6 The TV&V process readily
builds upon prior knowledge
gained from the testing
process. Since every test is
re-run for each release of
SAPHIRE, the initial testing
conditions for each release
is at least that of the
previous release.

Like most software development
projects, time and budget
constraints prohibited exhaustive
testing. So, the TV&V effort
focused entirely on quantitative
PRA results produced by
SAPHIRE. Very little time was
put into consideration and testing
of non-quantitative aspects of the
software.

Even though the current focus is
on the quantitative portion of
SAPHIRE, it would be incorrect to
assume that the other areas of
the software (e.g., the user
interface) were not tested. During
the operation of the automated
test calculations, the testing
software mimics the actions taken
by an analyst. These actions
include moving the cursor,
selecting objects, clicking on-
screen buttons, and typing
information into SAPHIRE. Since
a wide variety of PRA tests are
included in the suite of tests,
much of the user interface portion
of the software is tested along
with the calculations.

In addition to these automated
tests, the SAPHIRE software is

tested in the day-to-day
use it receives
from users
around the world.

Hundreds of
users rely on
the

calculational
ability of SAPHIRE

for both risk and
reliability calculations.

Included in these users are U.S.
National Laboratory personnel;
U.S. and foreign government
regulators, university students,
and nuclear power plant PRA
analysts. While the TV&V does
not credit this ad hoc testing, it
should be pointed out that this
testing mechanism is still an
important addition to the
automated testing.

3DJH������)DOO����� KWWS���VDSKLUH�LQHO�JRY 6$3+,5(�)$&(76

Developing the Tests
To develop the automate tests, we
first identified a list of important
SAPHIRE features; features related
to typical PRA calculations that
analysts perform. By determining
this set of important features,
selecting various models which
utilize these PRA features, and by
writing test scripts to exercise and
verify results of these features on
these models, it can be reasonably
concluded that SAPHIRE produces
valid results. A summary of the
PRA functions tested by the test
suite is as follows:

1. Fault tree analysis.

2. Event tree and sequence
analysis.

3. End state analysis.

4. Importance Measures.

5. Uncertainty analysis.

6. Change set feature.

7. GEM initiating event and
condition assessments.

8. Data utility functions.

Running the Tests
To perform the tests, all test scripts
and test databases are first stored

on a network drive, accessible via
version control software. The
version control software tracks all
changes by author and time. The
version control software stores and
marks the changed copy as the
newest version, but retains the old
versions as well for historical
purposes.

Prior to running the test suite, the
latest scripts are “checked out” of
the control library and compiled.
The compiled tests, along with the
database files and SAPHIRE, are
transferred to the test machine on
which the tests are to be run. This
delivery mechanism allows us to
quickly test SAPHIRE on a variety
of computer platforms and
operating systems. Currently,
SAPHIRE is supported for the
Microsoft Windows™ operating
systems of Windows 95, Windows
98, and Windows NT. The
SAPHIRE software should function
properly under derivatives of these
operating systems (e.g., Windows
2000™), but the TV&V has not
evaluated these other operating
systems.

The test suite is then started. For
each test, the test database is
started from a new “fresh” database
that is in a known state. The
compiled test script then runs a
series of test scenarios on that
database, recording expected
results and any deviations into
summary and detail files. These
results files are named according to
the run date and particular test. If

SAPHIRE fails a test, the cause is
investigated and fixed, and the
entire process is repeated.

Testing Results
As versions of SAPHIRE are
released, new results of the
testing are generated. The
SAPHIRE Users Group provides
an Internet location listing recent
changes to the SAPHIRE
software and downloadable
results of TV&V tests. These files
may be accessed at:

http://saphire.inel.gov/recent.htm

The two basic conclusions that
came out of the TV&V process
are:

1. SAPHIRE performs
accurate PRA analysis
calculations since areas
required for these calcul-
ations have been tested
with a reasonable degree
of confidence.

2. Automated testing allows
each new version of
SAPHIRE to be tested for
accuracy at least as well
as the previous version.
Adding additional tests to
the test suite over time
will increase the overall
confidence in the software
performance.

